Evidence that phosphorylation of iron regulatory protein 1 at Serine 138 destabilizes the [4Fe-4S] cluster in cytosolic aconitase by enhancing 4Fe-3Fe cycling.
نویسندگان
چکیده
Iron-sulfur cluster-dependent interconversion of iron regulatory protein 1 (IRP1) between its RNA binding and cytosolic aconitase (c-acon) forms controls vertebrate iron homeostasis. Cluster removal from c-acon is thought to include oxidative demetallation as a required step, but little else is understood about the process of conversion to IRP1. In comparison with c-acon(WT), Ser(138) phosphomimetic mutants of c-acon contain an unstable [4Fe-4S] cluster and were used as tools to further define the pathway(s) of iron-sulfur cluster disassembly. Under anaerobic conditions cluster insertion into purified IRP1(S138E) and cluster loss on treatment with NO regulated aconitase and RNA binding activity over a similar range as observed for IRP1(WT). However, activation of RNA binding of c-acon(S138E) was an order of magnitude more sensitive to NO than for c-acon(WT). Consistent with this, an altered set point between RNA-binding and aconitase forms was observed for IRP1(S138E) when expressed in HEK cells. Active c-acon(S138E) could only accumulate under hypoxic conditions, suggesting enhanced cluster disassembly in normoxia. Cluster disassembly mechanisms were further probed by determining the impact of iron chelation on acon activity. Unexpectedly EDTA rapidly inhibited c-acon(S138E) activity without affecting c-acon(WT). Additional chelator experiments suggested that cluster loss can be initiated in c-acon(S138E) through a spontaneous nonoxidative demetallation process. Taken together, our results support a model wherein Ser(138) phosphorylation sensitizes IRP1/c-acon to decreased iron availability by allowing the [4Fe-4S](2+) cluster to cycle with [3Fe-4S](0) in the absence of cluster perturbants, indicating that regulation can be initiated merely by changes in iron availability.
منابع مشابه
Direct square-wave voltammetry of superoxidized [4Fe-4S]3+ aconitase and associated 3Fe/4Fe cluster interconversions.
We report a direct square-wave voltammetric study of the iron-sulfur enzyme, aconitase, at the pyrolytic graphite edge electrode. New and established redox driven reactions were observed and the equilibrium reduction potential for each couple was determined: E0'[3Fe-4S]1+/0 = -268 mV, E0'[4Fe-4S]2+/1+ = -450 mV, E0'[4Fe-4S]3+/2+ = +100 mV, E0'Linear Form = -281 mV, and putatively, E0'[3Fe-4S]0/...
متن کاملNovel role of phosphorylation in Fe-S cluster stability revealed by phosphomimetic mutations at Ser-138 of iron regulatory protein 1.
Animals regulate iron metabolism largely through the action of the iron regulatory proteins (IRPs). IRPs modulate mRNA utilization by binding to iron-responsive elements (IRE) in the 5' or 3' untranslated region of mRNAs encoding proteins involved in iron homeostasis or energy production. IRP1 is also the cytosolic isoform of aconitase. The activities of IRP1 are mutually exclusive and are modu...
متن کاملIron-sulfur cluster-containing L-serine dehydratase from Peptostreptococcus asaccharolyticus: correlation of the cluster type with enzymatic activity.
Investigations were performed with regard to the function of the iron-sulfur cluster of L-serine dehydratase from Peptostreptococcus asaccharolyticus, an enzyme which is novel in the class of deaminating hydro-lyases in that it lacks pyridoxal-5'-phosphate. Anaerobically purified L-serine dehydratase from P. asaccharolyticus revealed EPR spectra characteristic of a [3Fe-4S]+ cluster constitutin...
متن کاملMössbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters.
Beef heart aconitase, isolated under aerobic conditions, has been studied with Mössbauer and EPR spectroscopy. In the oxidized state, the enzyme exhibits an EPR signal at g = 2.01. The Mössbauer data show that this signal is associated with a 3Fe cluster. In dithionite-reduced aconitase, the 3Fe cluster, probably of the [3Fe-3S] type, is in a paramagnetic state of interger electronic spin (S = ...
متن کاملMössbauer studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters.
Active beef heart aconitase contains a [4Fe-4S] cluster. One iron of the cluster, Fea, is labile and can be removed easily by oxidation in air to yield the [3Fe-4S]1+ cluster of inactive aconitase. We have previously shown that substrate binds to Fea. We have continued our Mössbauer studies by further investigating the active and inactive forms of the enzyme. When active aconitase, [4Fe-4S]2+, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 19 شماره
صفحات -
تاریخ انتشار 2009